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Abstract

This paper proposes an empirical test to depict possible endogenous cycles within Heterogeneous

Agent Models (HAMs). We consider a 2-type HAM into a standard small-scale dynamic asset pric-

ing framework. Fundamentalists base their expectations on the fundamental value, while chartists,

subject to self-ful�lling moods, consider the level of past prices. Because these strategies, by their

nature, cannot be directly observed but can cause the response of the observed data, we construct a

state-space model where agents' beliefs are considered the unobserved state components and from

which the heterogeneity of fundamentalist-chartist trader cycles can be mathematically derived

and empirically tested. The model is estimated using the S&P500 index for the period 1990-2020

at di�erent time scales, speci�cally, quarterly, monthly, and daily. We �nd empirical evidence of

endogenous damped �uctuations with a higher percentage of chartists in the short-term horizon. In

addition, results indicate time-varying behavioral heterogeneity within-group. Moreover, the model

exhibits better long-run out-of-sample forecasting accuracy compared to the benchmark random

walk model.
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1 Introduction

In his seminal paper, Alan Kirman (1992) shows that the choice of one `representative' standard utility-

maximizing individual `is not simply an analytical convenience [...], but is both unjusti�ed and leads to con-

clusions which are usually misleading and often wrong'. At the end of the last century, two lines of research

on the role of heterogeneous agent emerged. A �rst line extends the traditional Macro DSGE literature to

heterogeneous agent and it comes back to the works of Bewley (1986), Aiyagari (1994), and Huggett (1993),

where a continuum of agents (primarily, but not only, consumers) is introduced in order to discuss uncertainty

aggregates. A review of these models is provided in Algan et al. (2014). A second line of research is more

focused on the role of (groups of) agents (fundamentalists and chartists for example) in determining complex

dynamics of price �uctuations. Hommes (2006) and LeBaron (2006) survey the �rst papers. While sharing

the sensitivity toward the need to abandon the representative agent approach, these two lines of research have

developed independently.

Our contribution lies in the second literature; for this reason, when we talk about Heterogeneous Agent

Models (HAMs), we will refer to those papers. This behavioral approach undermines two important theoretical

pillars: market e�ciency based on rational behavior and the homogeneity among investors. The �rst one is

replaced with the idea that economic agents have limited cognitive abilities. The agents, unable to observe all

the information about the state of the economy, form their beliefs following mean-reverting and extrapolative

expectations feeding the boom and bust in real and �nancial cycles. The second one is substituted with the

idea that heterogeneity among agents is pervasive.

Pioneered by Day and Huang (1990), Chiarella (1992), De Grauwe et al. (1993), Lux (1995) and Brock

and Hommes (1998), the HAM theoretical literature is now mature and the results achieved are strong (see

as survey LeBaron, 2006; Franke, 2008; Chiarella et al., 2009; Hommes, 2021).1 On the other hand, there is

a growing empirical literature, even if we cannot observe any consensus on the estimation methodology (for

recent surveys, refer to Lux and Zwinkels, 2018 and Ter Ellen and Verschoor, 2018). Franke and Westerho�

(2017) note two approaches: direct and indirect. The �rst method employs surveys to measure the sentiments

of a speci�c group of the population, typically the momentum traders, and thus explain their behavior (see,

for example, Jongen et al., 2012 and Goldbaum and Zwinkels, 2014). The second considers a model as a whole

and strives to estimate its parameters (Ahrens and Reitz, 2005; Boswijk et al., 2007; Manzan and Westerho�,

2007; De Jong et al., 2009; Lof, 2012; Chiarella et al., 2012; Goldbaum and Zwinkels, 2014; Frijns and Zwinkels,

2018).

Concerning the latter, we can distinguish between two sub-groups that di�er for the inference method

(Kukacka and Barunik, 2017). In the �rst, key structural features of HAMs can be estimated straightaway.

Depending on the complexity of the models, we can list - among others - the linear/nonlinear least squares

1Over the years, the theoretical literature has applied the concept of heterogeneity in the expectation not only for
equity prices but also for the exchange rate market (see, for example, De Grauwe and Grimaldi, 2006, Gori and Ricchiuti,
2018 and Bassi et al., 2023 among others), the housing market (Dieci and Westerhoof, 2013) and to analyze macro-model
dynamics (Dosi et al., 2020; Kukacka and Sacht, 2023).
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(Boswijk et al., 2007; Hommes and in't Veld, 2017; Manzan and Westerho�, 2007), the maximum and quasi-

maximum likelihood (Alfarano et al., 2006; Chiarella et al., 2014 De Jong et al., 2009 and De Jong et al.,

2010; Bolt et al., 2019), the vector autoregression, and vector error correction approaches (Lof, 2015; Frijns and

Zwinkels, 2018). These works con�rm the theoretical models, recovering the belief coe�cients of di�erent groups

of speculators. Moreover, price movements in asset prices can derive from a switching mechanism that moves

agents among di�erent rules. In the second method, estimation based on simulating arti�cial data from the

model is instead used (Franke, 2009; Franke and Westerho�, 2011; Chen and Lux, 2018): through the method

of simulated moments, it is possible to depict phenomena which are the consequence of behavioral biases, such

as volatility clustering and long-memory e�ects (Schmitt, 2021). These works show that sentiment dynamics is

pivotal in explaining stylized facts detected in �nancial time series and in replicating observed anomalies within

these markets.2

Notwithstanding the di�erent estimation methods, there is agreement on a fundamental pillar: the het-

erogeneity of the expectations between di�erent groups of agents, which can in�uence price dynamics. These

heuristic beliefs remain observable under standard econometric approach, meaning that previous estimation

methods were applied for parameter estimation but did not provide an avenue for �ltering information on unob-

served states. In fact, econometric analyses are performed by combining observed and unobserved variables into

a single or multiple observed price dynamics. However, because behavioral heuristics are unobservable variables,

unlike the papers mentioned above, the present paper, using data on S&P500 for the period 1990-2020, employs

a state-space model formulation to estimate possible endogenous cycles that emerge as a consequence of latent

speculative behavior. A state-space representation is de�ned by a mathematical model of a system composed

of observed output and unobserved state variables (Durbin and Koopman, 2012). State variables evolve over

time, in�uencing outputs that depend on the unobserved dynamics. In our case, the hidden speculative beliefs

in�uence the observed price dynamics, possibly generating endogenous instability phenomena in the form of

endogenous �uctuations. Besides the tractability of the model, the main advantage of this framework is that,

through �ltering information on unobserved states, the researcher is able to test whether behavioral rules lead

to cyclical dynamics in the observed asset prices.

To perform it, we proceed as follows: We assume that mean-variance utility optimizer investors populate

the economy. From this scenario, we �rst set up the heterogeneous agent model setting.3 Consistent with

HAMs, the diversity of agents is re�ected in their expectation formation. Speci�cally, �nancial traders employ

2The papers mentioned above refer primarily to the heterogeneous agent models where heterogeneity concerns groups
- speci�cally, the strategies adopted by groups. It is worth underlining that a great e�ort also concerns the econometric
validation of agent-based models, which we would call pure ABMs (see Dosi and Roventini, 2019 for a comprehensive
review), where heterogeneity is pervasive, given that it is at the level of the single agent (Fagiolo et al., 2019; Monti et
al., 2022). As well highlighted by LeBaron and Tesfatsion (2008) and by Grazzini and Richiardi (2015), the estimation
of pure agent models is complicated by the heterogeneity of the agents but also by the di�culty of aggregating their
actions. Recently, Delli Gatti and Grazzini (2020) proposed both a Bayesian procedure to estimate the parameters of a
pure agent model and a method to aggregate the data obtained from the simulations so as to obtain historical series to
be used in the model validation phase. See also Lamperti et al., (2018) for ABM estimation via modern machine learning
techniques.

3In order to help the reader, the diagram in Fig. 1 illustrates the relationship between the classical heterogeneous
agent setting with the state-space model.
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either fundamental or technical expectation rules in order to predict future prices. Subsequently, to depict

the possible endogenous cycles, we consider the agents' beliefs as unobserved state components from which,

through a state-space model formulation, the endogeneity of fundamentalist-trend follower trader cycles can

be mathematically derived. More precisely, eigenvalues analysis can be performed to study the conditions for

oscillations in our discrete dynamic system associated with the unobserved belief components. Once we ob-

tain the cyclical conditions, maximum likelihood estimation via the Kalman �lter over the state-space model

is performed. At the same time, Monte Carlo simulation analysis is performed as a robustness test. In this

way, we can evaluate the presence of endogenous cycles directly from the data and investigate whether they

are statistically signi�cant or not. Finally, we estimate the relative shares of the two economic agents in the

market with the possibility of recovering the reaction coe�cient associated with the speculative expectation rule.

Heterogenous Agent
Setting

State-Space Form Kalman Filter
Estimation Results

Endogenous Cyclical
Conditions

Figure 1: From the heterogeneous agent setting to the state-space model, and back.

Although the state-space model has been around macroeconomics for a while, this instrument only recently

has been discovered to be useful for HAMs estimation.4 Lux (2018; 2021) uses Particle Markov Chain Monte

Carlo (PMCMC) and Adaptive PMCMC methods for state-space models to compare two di�erent HAMs. He

emphasizes that this methodology could be optimal for HAMs precisely because they typically have latent

components and observable variables. Along the same line, Gusella and Stockhammer (2021) propose an

empirical test for Minskyan �nancial cycles in equity and housing prices.

Our paper departs from Gusella and Stockhammer (2021) to depict possible endogenous cycles but high-

lighting the heterogeneity among agents and seeking to empirically identify di�erent evaluation behaviors. On

the one hand, we do not consider an unobserved fundamental price. In our case, fundamentalists base their

expectations on the deviation of observed fundamental value from market price, expecting a convergence be-

tween them: the fundamental value is identi�ed through the Gordon model (1959), as in Chiarella et al. (2012).

On the other hand, chartists, subject to self-ful�lling moods, consider the level of past prices acting as trend

followers.5 Additionally, believing that models may not explain series trends for all time scales, we focus on

implementing our model at di�erent time scales, speci�cally quarterly, monthly, and daily. Often, in theoretical

models little attention is paid to what time is and those who did empirical studies used di�erent time scales,

but never compared inside the same work.

Di�erently from the Bayesian approach of Lux (2021), we implement a frequentist approach. Compared to

Lux (2018), our quotas are �xed and we consider the strategies adopted by the agents as unobservable. While

4It is worth noting that within the literature à la Krusell and Smith (1998), the state-space model approaches and
heterogeneity are used from the start.

5Throughout the entire paper, we will use the terms chartists, speculators and trend followers interchangeably.
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we acknowledge that the assumption of �xed quotas is a strong one, it is noteworthy that this hypothesis has

historical precedence in the literature, with one of the seminal articles in the �eld of HAMs adopting a similar

premise (see Day and Huang, 1990).6 These �xed quotas can also be interpreted as estimates of the shares

of chartists and fundamentalists within our sample or as the probabilities that agents adopt one of these two

strategies within the de�ned time span. In that sense, this method allows us to measure and compare how the

percentage of chartists and their associated reaction parameters change over di�erent frequency times, making

a structural break analysis. Moreover, this choice allows us to construct a reduced-form model for estimation

with a feasible search for the mathematical conditions of possible complex eigenvalues. On this point, rather

than comprehending the movements of the proportions during a local bubble phenomenon, we are interested in

understanding whether endogenous cyclical phenomena are formed without imposing restrictions on the nature

of the eigenvalues associated with the parameters of the unobserved beliefs of the agents. In fact, di�erently

from the standard general equilibrium model where the equilibrium is assumed, in the present work, there

are no top-down constraints that would prevent the economy from �uctuating out-of-equilibrium. It should

also be noted that, as shown by Lux (2021b), most of the empirical nonlinear models do not perform better

than a linear chartist-fundamentalist model, and often their �t is worse than the �t of the linear benchmark.

Notwithstanding, to overcome the limitation of �xed quotas with the proposed estimation strategy, a state-space

rolling window analysis is performed to depict the possible evolution of agents between the groups.

In all the frequencies considered, our results support endogenous cycles, with the modulus of complex eigen-

values lower than one. The percentage of chartists tends to increase in the correspondence of an increase of

frequency-time and, as highlighted by the rolling window exercises, for a certain speci�c period in the sample:

before the dot.com crisis and the global �nancial crisis. At the same time, the intensity of the reaction parameter

decreases passing from quarterly to monthly and daily data.

In the light of these considerations, our paper makes four contributions to the empirical behavioral literature

on asset pricing with heterogeneous expectations. Firstly, compared to prior estimations of two-type HAMs

applied to the S&P 500 index, state-space model has not been thoroughly investigated for searching endogenous

cycles as a consequence of unobserved behavioral heuristics. This is where our paper comes in: assuming

that unobservable variables drive the dynamics of the observable time series, we directly test if there is a

cyclical dynamic in the observed asset prices. As a second novelty, as stressed before, we make a comparison

between di�erent time scales. At the moment, comparisons are between di�erent asset prices (Ter Ellen et

al., 2021; Gusella and Stockhammer, 2021) or di�erent models on the same asset prices; for example, Lux

(2021b) compares the performance and the explanatory power of di�erent HAMs on S&P 500 distortion. Third,

because the linearity of the model does not allow us to depict possible local instability phenomena (Beaudry et

al., 2017), we run a state-space rolling window analysis to test the evolution of quotas of traders and to see if

the speculative position dominates during a speci�c period of time.

Finally, despite its importance, forecasting procedures are still little explored in this literature. Empirical

works within HAMs tradition have focused more on �nding heterogeneity in data, while few works, especially

6See also Beja and Goldman (1980) for the behavioral �nance literature.
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for stock market prices, have devoted attention to the possibility of extrapolating forecasting power through

the models used (see, for example, Chiarella et al., 2012; Lof, 2012, and Recchioni et al., 2015).7 Furthermore,

state-space models have yet to be used to study the forecasting performance of heterogeneous agent models. As

a consequence of this, the last methodological contribution is to evaluate the out-of-sample forecasting power of

a state-space HAM compared to the random walk benchmark. With this respect, our analysis reveals that the

forecasting performances of RW and behavioral speci�cations are di�erent in the short-run and in the long-run

horizons.

The rest of the paper is organized as follows. Section (2) discusses the theoretical and empirical methodology.

Firstly, we set up the heterogeneous agent model in (2.1). The model is then converted into a state-space

form (2.2), from which the conditions for endogenous cycles can be mathematically derived (2.3) and the

estimation strategy implemented (2.4). Main results are reported in section (3). Speci�cally, we �rst show results

obtained at quarterly frequency (3.1), later at monthly (3.2), and �nally at daily (3.3). After the comparison

between the di�erent speci�cations (3.4), section (4) presents the state-space rolling window analysis, and

section (5) compares the out-of-sample predictability of the behavioral speci�cation with that of the random

walk hypothesis. Finally, section (6) reports conclusions and �nal considerations.

2 Methodology

This section describes the proposed estimation strategy to study the presence of endogenous �nancial �uctuations

due to the unobserved beliefs of agents in the �nancial asset market.

2.1 The model

In line with, N �nancial operators at time t can invest in two types of asset: a risk-free asset that pays a risk-free

interest rate r and a single risky asset with price p, paying a stochastic dividend y (Brock and Hommes, 1998).

The dynamics of wealth for investor i ∈ N at the end of period t+ 1 is described by the following dynamic

equation:

W i
t+1 = (1 + r)W i

t + [pt+1 + yt+1 − (1 + r)pt]Z
i
t ,

where W indicates the wealth of agent i while Z is the demand for the risky asset. Investors are mean-variance

utility optimizers and their utility can be represented by the following equation:

U
(
W i

t+1

)
= Ei

tW
i
t+1 − (a/2)V i

t

(
W i

t+1

)
,

where Et is the expectation operator, Vt is the conditional variance of the wealth of agent i, and a > 0 represents

the risk aversion parameter, the same for all the agents. The demand for the risky asset is derived from the

7For the exchange rate, we can mention Manzan and Westerho� (2007), De Jong et al. (2010) and Jongen et al.
(2012).
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following maximization process:

i
max

z

{
Ei

tW
i
t+1 − (a/2)V i

t

(
W i

t+1

)}
.

Deriving with respect Zt and knowing that the variance of wealth is equal to V ar (W ) = E
[
(W − E [W ])

2
]
,

we obtain:

Ei
t (pt+1) + Ei

t (yt+1)− (1 + r)pt − Zi
taV

i
t (pt+1 + yt+1) = 0.

The optimal demand for risky asset reads as follows:

Zi
t =

Ei
t (pt+1) + Ei

t (yt+1)− (1 + r)pt
aV i

t (pt+1 + yt+1)
.

As in Brock and Hommes (1998), for analytical tractability, variance is constant:

V i
t (pt+1 + yt+1) = σ2 ∀ i ∈ N,

and expectations about dividends are homogeneous for all trader types and equal to the conditional expectation:

Ei
t (yt+1) = ȳ ∀ i ∈ N.

In the light of this, denoting with Et (pt+1) the investors' average expectation about the price of the risky

asset at time t+ 1 (ΣN
i=1

Ei
t(pt+1)
N ), the aggregate demand for the risky asset Zt reads as follow:

Zt = ΣN
i=1Z

i
t = N

Et (pt+1) + ȳ − (1 + r) pt
aσ2

.

Without loss of generality, the outside supply S of the risky asset is equal to zero (NS = 0), such that, from

the equilibrium condition:

Et (pt+1) + ȳ − (1 + r)pt
aσ2

= 0,

i.e.:

(1 + r)pt = Et (pt+1) + ȳ.

In line with HAMs, heterogeneity of agents is in the expectation formation. Financial traders use a fun-

damental or a technical expectation rule to forecast future prices. Indicating with δ the market shares of

fundamentalists (f), and with 1 − δ the market shares of chartists (s) following the technical rule, investors'

average price expectations can be formalized in the following way:

Et (pt+1) = δEf
t (pt+1) + (1− δ)Es

t (pt+1) .
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For the purpose of estimation, it is assumed that both the risk-free rate and the constant expectation about

dividends are equal to zero. The price of the risky asset pt is then expressed as follows:

pt = δEf
t (pt+1) + (1− δ)Es

t (pt+1) . (1)

We now formalize the expectation formation of the two groups of agents considered. Let us start consid-

ering the fundamentalists. They believe in the e�cient market theory, expecting the price to be equal to the

fundamental value pf . In the HAM literature, the fundamental value is de�ned through the Gordon growth

model (Gordon, 1959). So the fundamentalists' expectation can be de�ned as:

Ef
t (pt+1) = pft , (2)

where Ef
t is the forecast made in period t by the fundamentalists.

As to the chartists, we de�ne their expectation in the following way:

Es
t (pt+1) = pft + β (pt−1 − pt−2) , with β > 0 (3)

where Es
t is the forecast made by chartists and β is the reaction coe�cient expressing the degree by which they

extrapolate the past change in the asset market. At time t, only prices determined at the end of period t − 1

are known by the agents. Based on the information at time t− 1, they build their forecasts for future prices at

t+ 1.8

Substituting Eqs. 2 and 3 in Eq. 1, we obtain:

pt = δ
(
pft

)
+ (1− δ)

(
pft + β (pt−1 − pt−2)

)
,

from which:

pt = pft + (1− δ)β (pt−1 − pt−2) .

This last equation, with respect to the belief function of chartists Bs, can be rewritten in the following way:

pt = pft + (1− δ)Bs
t , (4)

with

Bs
t = β (pt−1 − pt−2) .

8Unlike what is typically done in the HAMs literature, where the "base price" is the price at the previous time, in
our case, they take into account the fundamental value in forming expectations before proceeding to speculate based on
past prices. This modi�cation allows us to obtain a non-singular transition matrix in the transformation to a state-space
model. Please refer to paragraph 2.2 and Franke (2008) for more details.
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2.2 The state-space form

As agents' behavioral beliefs are unobserved variables, we can construct our state-space model in the context

of the unobserved components model. With this modeling strategy, we can reveal the nature and the cause

of the dynamic movement of observed variables in an e�ective way. Indeed, with a state-space model, it is

possible to explain an observed variable's behavior by examining the unobserved components' internal dynamic

properties. In other words, we can analyze the e�ect of the unobserved components variable (heuristic beliefs)

on the observed variable (asset prices). To perform it, Eq. 4 is substituted in the belief function of the chartists,

so to obtain:

Bs
t = β

(
pft−1 + (1− δ)Bs

t−1 − p
f
t−2 − (1− δ)Bs

t−2

)
.

In line with Franke (2008) and Lux (2021a), the fundamental value is assumed to follow a Brownian motion

with increments εt ∼ N (0, σε).
9 We thus have:

Bs
t = β (1− δ)Bs

t−1 − β (1− δ)Bs
t−2 + εt.

This last equation is the latent equation while Eq. 4 is the observed equation. An essential feature of any

state-space model is that the state equation must be a �rst-order stochastic di�erence equation (Enders, 2016)

so that, in a stochastic matrix-vector formulation, the state-space form assumes the following form:

pt = pft +
[

(1− δ) 0
] Bs

t

Bs
t−1

 (5)

 Bs
t

Bs
t−1

 =

 β (1− δ) −β (1− δ)

1 0

 Bs
t−1

Bs
t−2

+

 εt

0

 , (6)

where εt is the individual disturbance term normally distributed with mean zero and variance σ2
ϕ.

Eq. 5 is the measurement equation, while Eq. 6 is the transition matrix containing the dynamics of the belief

function of the group of chartists. The system's dynamics is given by the transition equation, which describes

the evolution of the vector of unknown latent variables. Eigenvalues analysis can be performed to study the

conditions for oscillations in our discrete dynamic system associated with the unobserved belief component.

2.3 The cyclical conditions

Solving for the determinant of the characteristic equation, the roots are the following:10

λ1,2 =
β (1− δ)±

√
(β (1− δ))2 − 4β (1− δ)

2
.

9This hypothesis is econometrically tested on the Gordon fundamental time series. Due to space reasons, we do not
display here the results. They are available in Supplementary Material A.

10In Appendix A, the mathematical steps to obtain eigenvalue condition for cyclical behavior is reported.
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In order to have an oscillating behavior, the two eigenvalues have to be complex, so we require:

∆ = (β (1− δ))2 − 4β (1− δ) < 0,

i.e.:

β (1− δ) [β (1− δ)− 4] < 0. (7)

From the previous equation, we observe that the necessary and su�cient condition to obtain complex eigenvalues

reads as follow:

0 < (1− δ)β < 4.

This mathematical result re�ects an important economic condition of the HAMs literature: to obtain

endogenous �uctuation phenomena in the system, the percentage of chartists must not be zero (1− δ 6= 0). At

the same time, the reaction parameter must be positive (β > 0). If β = 0 or 1− δ = 0, in line with the e�cient

market hypothesis, the price will re�ect the exogenous fundamental price in an equilibrium condition, which

can be a�ected only by unexpected exogenous shocks. In other words, the model boils down to a benchmark

model with fundamental agents having rational and perfect information about the "state" of the economy.

If condition 7 holds, the two associated complex eigenvalues assume the following form:

λ1,2 =
Tr (A)

2
± i
√
−∆

2
= a± ib, with A =

 β (1− δ) −β (1− δ)

1 0

 .

In an equivalent trigonometric form:

λ1,2 = ρ (cos θ ± i sin θ) ,

where the modulus is:

ρ =
(
a2 + b2

)1/2
,

and respect to our parameters of interest:

ρ =

√
(β (1− δ))2

4
+
−(β (1− δ))2 + 4 (β (1− δ))

4
.

If
√
β (1− δ) = 1, we obtain constant-amplitude endogenous �uctuations. With the modulus of eigenvalue

lower than one (
√
β (1− δ) < 1), we observe damped endogenous �uctuations, while explosive endogenous

�uctuations if
√
β (1− δ) > 1.

For simplicity on notations, we set

11



 β (1− δ) = a11

−β (1− δ) = a12

(8)

Summing up, the state-space model can be rewritten in compact form as:

pt = pft +HBt,

Bt = ABt−1 + ϕt ϕt ∼ N (0, Q) ,

where pt is the observable asset price,

Bt =

 Bs
t

Bs
t−1

 ,
is the state vector,

H =
[

(1− δ) 0
]
,

is the measurement matrix,

A =

 a11 a12

1 0

 ,

is the transition matrix and ϕt is the vector containing the state disturbance of the unobserved component,

normally distributed with mean zero and variances collected in the diagonal matrix Q.

2.4 Estimation Strategy

After converting the structural model into reduced form for estimation purposes, we proceed to estimate it.

We use S&P 500 data, employing the closing adjusted values from January 1990 to December 2020, with a

quarterly, monthly and daily frequency. As part of the econometric analysis, all series are in log level. The

fundamental price is calculated through the Gordon growth model as in Chiarella et al. (2012). De�ning dt as

the dividend �ow, g the average growth rate of dividends, and r the average required return, the fundamental

value of asset price can be de�ned as:

pft = ut = dt
(1 + g)

(r − g)
.

Following Chiarella et al. (2012), we assume that r is equal to the sum of the average dividend yield ỹ and the

average rate of capital gain x̃. The Gordon growth model implies that x̃ is equal to g, so as to obtain:

ut = dt
(1 + g)

ỹ
. (9)
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From Eq. 9, the fundamental value is now equal to the current dividend �ow multiplied by a constant

multiplier.

After we obtain the fundamental value and the model is in a state-space form, the cyclical parameters

a11 and a12 with the proportion of chartist traders (1 − δ) are estimated by maximum likelihood estimation

via the Kalman Filter. More precisely, the parameters of the model are estimated by maximum likelihood

using the prediction error decomposition approach, where the one-step prediction and updating equations are

calculated via the state-space form using the Kalman �lter.11 This �lter is an algorithm that uses a data series

of an observed variable to produce estimates of unknown variables that generate the dynamics of the observed

variable. Once the iterative Kalman �lter algorithm extracts the unobserved states by performing forward

recursion over the state-space model (Harvey, 1989), we can check from the data if the cyclical �uctuations are

an endogenous outcome that we �nd as a result of the interaction of the two unobserved components (i.e., if

the cyclical condition β (1− δ) [β (1− δ)− 4] < 0 is respected). Moreover, after estimating cyclical parameters

(a11 and a12) with the proportions of trend followers (1 − δ), from Eq. 8 we can obtain the value of reaction

parameter for chartists (β).

In the optimization process for maximum likelihood estimation, we assume that 1− δ is between zero and

one. Moreover, the equality constrain a11 + a12 = β (1− δ)− β (1− δ) = 0 is assumed so as to obtain only one

positive value of the reaction coe�cient β.

3 Estimation Results

The results are reported as follows. We �rst analyze the model at quarterly frequency and then at monthly and

daily frequency. Finally, as a novelty, we compare the di�erent speci�cations.

3.1 Quarterly Results

Table 1 shows the obtained results for time series at quarterly frequency. As it turns out, the signs of a11

and a12 respect condition in Eq. 7 for oscillatory phenomena. The parameters are within the range size

{β (1− δ) [β (1− δ)− 4] < 0} and estimates are statistically signi�cant at the ten percent level. In particular,

we have damped �uctuations (
√
β (1− δ) < 1) with the modulus equal to 0.65.

Looking at the percentage of the two di�erent types of agents, we notice that chartists (1−δ) are the minority

in comparison with fundamentalists (δ). More precisely, 65% of the agents are estimated to be fundamentalists

while 35% are chartists; it is worth noting that the percentage of chartists is statistically signi�cant at the one

percent level. Once we obtain these estimates, from Eq. (8) it is possible to recover the value of β, which is

equal to 1.2.

11See appendix B for the mathematical steps of the �ltering procedure.
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Table 1: Estimation Results [S&P500 Quarterly Data]

Cyclical Parameters

a11 a12 a21 a22

V alues 0.42∗ -0.42∗ 1 0
(0.26082) (0.26082)

Percentage and Reaction Coe�cients

1− δ β

V alues 0.35∗∗∗ 1.2
(0.01122)

State Disturbance

σε

V alues 0.89080∗∗∗

(0.02581)

Cyclical Conditions

β (1− δ) [β (1− δ)− 4] < 0 Fulfilled(
a2 + b2

)1/2
Damped

Info Model

Eigenvalues −0.2102± 0.6134i

Modulus 0.65

Log-likelihood -31.7849

Akaike Info Criterion 71.5697

Bayesian Info Criterion 82.8184

Notes: Standard errors in parentheses.
∗, ∗∗, ∗∗∗ denotes statistical signi�cance at the 10%, 5%, and 1% levels respectively.

Overall, these results provide empirical support for the existence of endogenous �nancial cycles in equity

prices as a consequence of the di�erent expectation rules de�ned in our model. Moreover, the previous �ndings

hold also when we implement Monte Carlo simulation test. We simulate n = 1000 sample path of observations

from the estimated model, randomly generating state disturbances from the standard normal distribution by

plugging them into the state-space model. Once we obtain the results, we consider the mean value of the 1000

cyclical conditions to see if the endogenous �uctuations are satis�ed. As previously found, results support the

hypothesis of endogenous cyclical condition (see Table 2).12

12The estimated model is evaluated with diagnostic checks on residuals. In state-space models, these tests are applied
to what are known as the standardized prediction errors, which are the ratio between the one-step ahead prediction
errors obtained from the Kalman �lter procedure and its variance. Residuals should satisfy the following three properties
(Commandeur and Koopman, 2007): independence, homoscedasticity, and normality. The assumption of independence
of the residuals is examined with the sample auto-correlation function, homoscedasticity is checked with the Engle ARCH
test to evaluate the null hypothesis of no autoregressive conditional heteroscedasticity e�ects, and �nally, the Jarque-Bera
test is used to check that residuals are normally distributed. Due to space reasons, we do not display here the results.
They are available in Supplementary Material B.
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Table 2: Monte Carlo Simulation Results [S&P500 Quarterly Data]

Cyclical Parameters

a11 a12 a21 a22

V alues 0.4128 -0.4128 1 0
[0.2830 - 0.5430] [0.2830 - 0.5430]

Percentage and Reaction Coe�cients

1− δ β

V alues 0.41 1
[0.32 - 0.49]

State Disturbance

σε

V alues 0.7609
[0.6019 - 0.9199]

Cyclical Conditions

β (1− δ) [β (1− δ)− 4] < 0 Fulfilled(
a2 + b2

)1/2
Damped

Info Model

Eigenvalues 0.2064± 0.6084i

Modulus 0.64

Notes: Con�dence interval in squared brackets.

The values of parameters are the mean value of 1000 MC simulation results.
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3.2 Monthly Results

The estimates of our monthly model are displayed in Table 3. Starting with the maximum likelihood es-

timates, we notice that the cyclical parameters are highly signi�cant, with estimated coe�cients signi�cant

at the one percent statistical level. Moreover, a11 and a12 respect the mathematical condition in Eq. 7

{β (1− δ) [β (1− δ)− 4] < 0} for damped �uctuations [
√
β (1− δ) < 1]. As before, these results con�rm the

presence of endogenous �uctuation with the modulus of complex eigenvalues near one (ρ = 0.73), likely to

generate persistent �uctuations.

Table 3: Estimation Results [S&P500 Monthly Data]

Cyclical Parameters

a11 a12 a21 a22

V alues 0.53∗∗∗ -0.53∗∗∗ 1 0
(0.23568) (0.23568)

Percentage and Reaction Coe�cients

1− δ β

V alues 0.63∗∗∗ 0.85
(0.01004)

State Disturbance

σε

V alues 0.48935∗∗∗

(0.00783)

Cyclical Conditions

β (1− δ) [β (1− δ)− 4] < 0 Fulfilled(
a2 + b2

)1/2
Damped

Info Model

Eigenvalues −0.2688± 0.6822i

Modulus 0.73

Log-likelihood -89.2338

Akaike Info Criterion 186.468

Bayesian Info Criterion 202.143

Notes: Standard errors in parentheses.
∗, ∗∗, ∗∗∗ denotes statistical signi�cance at the 10%, 5%, and 1% levels respectively.
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On the basis of monthly data, now chartists (1−δ = 63%) are in the majority with respect to fundamentalists

(δ = 37%). This e�ect is compensated by the intensity of the reaction parameters. We observe a value for β

equal to 0.85. In this sense, with quarterly data, the speculative position is primarily taken from beliefs that are

not shared by the majority of the market with a high reaction coe�cient (β = 1.2). The opposite for monthly

data, where the speculative position is primarily taken from beliefs shared by the majority of the market with

a lower reaction coe�cient (β = 0.85).

Again, as we have done for quarterly data, our results are enriched with Monte Carlo simulation results.

Results are summarized in Table 4. Overall, we can conclude that estimation results provide empirical support

for endogenous cycles at monthly frequency.

Table 4: Monte Carlo Simulation Results [S&P500 Monthly Data]

Cyclical Parameters

a11 a12 a21 a22

V alues 0.5350 -0.5350 1 0
[0.4639 - 0.6061] [0.4639 - 0.6061]

Percentage and Reaction Coe�cients

1− δ β

V alues 0.51 0.88
[0.1873 - 0.8395]

State Disturbance

σε

V alues 0.6832
[0.1120 - 1.2544]

Cyclical Conditions

β (1− δ) [β (1− δ)− 4] < 0 Fulfilled(
a2 + b2

)1/2
Damped

Info Model

Eigenvalues −0.2675± 0.6808i

Modulus 0.7315

Notes: Con�dence interval in squared brackets.

The values of parameters are the mean value of 1000 MC simulation results.

3.3 Daily Results

The results for time series at daily frequency are presented in Table 5. Because no data on dividends at daily

frequency are available, we interpolate Gordon data to obtain a larger number of time series observations. In

particular, we increase the frequency of observation passing from monthly to daily frequency.

Comparing these results with previous ones, we notice important similarities and di�erences. Concerning
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the cyclical conditions, as for quarterly data, these are formally satis�ed {β (1− δ) [β (1− δ)− 4] < 0} with

damped �uctuations at ten percent statistical signi�cance [
√
β (1− δ) < 1]. As for monthly data, we �nd a

higher proportion of chartists than fundamentalists; 71% of agents are estimated to be chartists at one percent

statistical evidence, and the remaining 29% are fundamentalists. Again we can obtain the extent of chartists

extrapolation coe�cient from Eq. 8, which is 0.60. Overall, as shown in Table 6, the previous �ndings hold also

when we implement Monte Carlo simulation test.

Table 5: Estimation Results [S&P500 Daily Data]

Cyclical Parameters

a11 a12 a21 a22

V alues 0.43∗ -0.43∗ 1 0
(0.24365) (0.24365)

Percentage and Reaction Coe�cient

1− δ β

V alues 0.71∗∗∗ 0.60
(0.00252)

State Disturbance

σε

V alues 0.00151∗∗∗

(0.00783)

Cyclical Conditions

β (1− δ) [β (1− δ)− 4] < 0 Fulfilled(
a2 + b2

)1/2
Damped

Info Model

Eigenvalues −0.2165± 0.6214i

Modulus 0.66

Log-likelihood -1890.21

Akaike Info Criterion 3788.42

Bayesian Info Criterion 3816.28

Notes: Standard errors in parentheses.
∗, ∗∗, ∗∗∗ denotes statistical signi�cance at the 10%, 5%, and 1% levels respectively.
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Table 6: Monte Carlo Simulation Results [S&P500 Daily Data]

Cyclical Parameters

a11 a12 a21 a22

V alues 0.4227 -0.4227 1 0
[0.4064 - 0.4390] [0.4064 - 0.4390]

Percentage and Reaction Coe�cients

1− δ β

V alues 0.76 0.55
[0.5635 - 0.9565]

State Disturbance

σε

V alues 0.4116
[0.2961 - 0.5271]

Cyclical Conditions

β (1− δ) [β (1− δ)− 4] < 0 Fulfilled(
a2 + b2

)1/2
Damped

Info Model

Eigenvalues −0.2114± 0.6148i

Modulus 0.6501

Notes: Con�dence interval in squared brackets.

The values of parameters are the mean value of 1000 MC simulation results.

3.4 From Quarterly to Daily Frequency

At this point of the analysis, we can compare and comment the obtained results. First, as we can see from

Table 7, the percentage of fundamentalists is higher than the percentage of chartists at quarterly frequency. A

similar phenomenon can be detected in the �rst speci�cation of the Recchioni et al. (2015) model, where the

fundamentalist strategy remains predominant over the chartist one. However, with an increase in frequency-

time, the percentage of speculators (1 − δ) tends to increase: (1 − δ) equals 0.35 with quarterly data, 0.63 at

monthly frequency, and 0.71 with daily data. These results align with HAM literature, which presupposes an

increasing speculative position in the short run period. At the same time, our results are in line with Poterba

and Summers (1988) and Frankel and Froot (1990). In a di�erent theoretical and empirical context, Poterba

and Summers (1988) characterize the di�erent dynamics of asset returns for the short vs. long horizon time,

suggesting that stock returns exhibit positive serial correlation over short periods and negative over longer

intervals. Such di�erences could be the consequence of the presence of di�erent agents which coexist in the

market: the mean-reverting traders and noise traders/feedback traders (see also Cutler et al., 1990). Both

groups of traders a�ect prices, and the introduction of speculative traders appears to be a plausible explanation

for transitory price dynamics in the short horizon.
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Table 7: Comparison between the di�erent frequencies

Behavioral HAM

Quarterly Monthly Daily

Pct. of fundamentalists δ 0.65 0.37 0.29

Pct. of chartists 1− δ 0.35 0.63 0.71

Spec. reaction coe�. β 1.2 0.88 0.60

Akaike info criterion AIC 71.5697 186.468 3788.42

Bayesian info criterion BIC 82.8184 202.143 3816.28

Modulus ρ 0.65 0.73 0.66

Cycles yes yes yes

Second, the reaction coe�cient β is equal to 1.2 with quarterly data, 0.88 at monthly frequency, and 0.60

with daily data. In other words, the intensity of the reaction parameter decreases from quarterly to monthly

data and daily data. This outcome, which we do not �nd in any other paper within the literature, holds logical

signi�cance. In fact, economic agents extrapolate data more intensely at intervals of low frequency compared

to intervals of high frequency, expecting, in the latter case, smaller quantitative changes.

Finally, we observe a tendency towards stable oscillatory patterns for all the di�erent frequency speci�ca-

tions: ρ equals 0.65 with quarterly data, ρ = 0.73 at monthly frequency, and ρ = 0.66 with daily data. The

system stays within a stable region and does not generate divergent trajectories. Because linearity biases the

results toward damped �uctuations (Beaudry et al., 2017), nonlinearity would enrich the possible trajectories

highlighting the destabilizing tendency of chartist behavior and the stabilizing force exerted by fundamentalists.

However, in our opinion, this limitation is overcome by three crucial aspects. Firstly, HAMs are disequilibrium

models; unlike what happens in the standard general equilibrium model where the equilibrium is posited as

an assumption, in the present work, there is no top-down restriction preventing the economy from �uctuating

out-of-equilibrium. The dynamics emerge as an endogenous outcome generated by the interactions among the

agents (see also Delli Gatti et al., 2018). In this sense, we do not assume the existence of cyclical phenomena,

but also the existence of damped phenomena is not assumed: in fact, we do not impose any preconditions on

the polynomial roots. Secondly, even if we obtain damped oscillations, at least for monthly data, eigenvalues'

modulus is near to one so as to generate persistent endogenous �uctuations. In our view, these results are in line

with those obtained by Hommes et al. (2005) and Hommes et al. (2008) in a controlled experimental environ-

ment for asset pricing. Indeed, they show how realized asset prices exhibit oscillations around the fundamental

price with a slow dynamic convergence to it. Lastly, as also stressed in the introduction, most of the empirical

nonlinear models do not perform better than a linear chartist-fundamentalist model, and often their �t is worse

than the �t of the linear benchmark (Lux, 2021b).
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4 Rolling Window Analysis

In an economic environment characterized by the contagion of beliefs, the percentage of agents could vary. To

highlight it, we perform a state-space rolling window analysis to check how the percentage of heterogeneous

traders changes over time. With this technique, we can assess the dynamics of δ and 1− δ over a rolling window

of a �xed size through the sample; if the parameters change during the sample, then the rolling estimates capture

this variation. This type of analysis allows us to understand if there is a higher intensity of one behavior with

respect to the other in a certain period.

Conventionally, the length of the rolling window is arbitrarily determined and depends on the sample size

(Inoue et al., 2017). We use a short rolling window size for data collected in short intervals and a larger size for

longer intervals. Following Clark and McCracken (2009), for quarterly data, we choose a rolling window size

m = 40, i.e., the number of consecutive observations per rolling window, and a rolling window size m = 120

and m = 3650 for monthly and daily observation respectively (Molodtsova and Papell, 2009). These sizes allow

us to implement inference on a relatively large dimension and also to check the period before and after the two

major �nancial crises of the last years, the dot.com crisis (2000) and the global �nancial crisis (2007/2008).

Together with the parameters, we calculate the moving mean of the percentage of agents over a sliding window

of length �ve for quarterly data, length 13 for monthly data, and 365 for daily observation.

The obtained results for quarterly data are shown in Fig. 2. The percentage of speculative position slightly

increases during the nineties. This is the period before the dot.com crisis (the internet bubble of the late 1990s).

After the explosion of the bubble in the 2000, the percentage decreases with a contemporaneous increase of

fundamentalist behavior. From the middle of the year 2000, there is a further increase of this percentage

until an inversion of tendency after the crisis of 2007/2008, thus generating a global tendency towards stable

oscillatory patterns.

The obtained results for monthly data are shown in Fig. 3. The moving-mean of chartists starts around

40% to rise until the year 1999/2000, falls close to 34% and rises again to about 55% until 2008/2009 and then

falls again after the global �nancial crisis.
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Figure 2: The line represents the dynamics of the moving mean of the parameter (1− δ) over a length

5 sliding window (Quarterly Data).

Figure 3: The line represents the dynamics of the moving mean of the parameter (1− δ) over a length

13 sliding window (Monthly Data).

For daily data, results are shown in Fig. 4. The �gure depicts the dynamics of speculative weight and we

notice a similar pattern as for the previous cases. The rolling state-space analysis clearly illustrates the e�ect of

a higher intensity of speculative behavior before the year 2000 and before the global �nancial crisis. The rolling
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percentage of the moving mean of chartists increases around 85% in 2000, falls after the year 2000, rises again

until the end of 2007 (1 − γ = 86%), and then has a decreasing trend after the year 2008. This implies that

speculative behavior reached its peak during the period before the crisis.

Figure 4: The line represents the dynamics of the moving mean of the parameter (1− δ) over a length

365 sliding window (Daily Data).

These results, obtained through a state-space rolling window analysis, are consistent with previous results,

like Chiarella et al. (2012) and Lof (2012), which showed how fundamental strategies are used more often in

times of crisis. In our case, too, we observe an increase in the chartists' behavior before the explosion of the

dot.com bubble and the global �nancial crisis. This means that speculative positions characterize the upward

trend while the downward trend has been dominated by the agents adopting a fundamentalist behavior.

5 Out-of-Sample Forecasting Procedure

To complete the analysis, we examine and compare the HA models' performance with that of a benchmark

random walk model at various forecast horizons (short vs. long horizon) and di�erent frequency-time (quarterly,

monthly, and daily).

We divide our sample (1990-2020) into two segments; the in-sample estimation and the out-of-sample

forecast. The out-of-sample period coincides with the last three years (2018-2020) so as to ensure many forecast

observations to conduct inference. Concerning the forecasting procedure, the prediction error decomposition

approach is repeated for all the out-of-sample period in the forecasting exercise. To perform it, after running the

Kalman �lter up to time T , we have the starting values for the forecast of the observed series from the current

estimate of the state vector (Durbin and Koopman, 2012). In particular, we use the �nal state predictor Zt | t
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together with the measurement and transition equation to construct PT+h|T where h = 1, 2, ...12 (for quarterly

data), h = 1, 2, ...36 (for monthly data) and h = 1, 2, ...1095 (for daily data). At the same time, since the sample

separation is arbitrary, we perform a state-space rolling window estimation forecasting analysis with a �xed

sample size to forecast the h period ahead (see Fig. 5). In this way, we aim to mimic the behavior of �nancial

traders who update their forecasting when new information arrives in each period.

T=2018 T+12=2020

Out of SampleIn Sample

h=1

h=2

T=1990

h=3

Figure 5: State-space rolling-window forecasting procedure for quarterly data.

We test the robustness of our analysis by looking at each speci�cation through the Mincer and Zarnowitz

test (Mincer and Zarnowitz, 1969). In this way, we can evaluate a possible systematic bias in the historical

forecasts.13 Second, we compare the two forecasting performances (HAMs vs random walk) by looking at the

ratios of root mean square error (RMSE) and mean absolute error (MAE) for di�erent forecasting horizons.

Finally, the Diebold-Mariano test is implemented to determine whether the two speci�cation forecasts are

signi�cantly di�erent (Diebold and Mariano, 1995).14

Following the Mincer-Zarnowitz test, to have unbiased forecasts, the regression of actual value on the ex-

ante forecast should have a zero intercept and a coe�cient of one. Table 8 illustrates the obtained results for

the behavioral speci�cation. Overall, for all the frequencies considered, coe�cients are di�erent from zero at

one percent level and values are very close to one, indicating systematic unbiased in the historical forecasts.

The comparison of the out-of-sample forecasting performance based on RMSE and MAE is summarized

in Tables 9, 10 and 11. The columns represent the ratio of root mean squared error (RMSE) and the ratio

of the mean absolute forecast error (MAE) of the behavioral model (BM) to that of the random walk (RW).

A number greater than one represents a better performance of the RW hypothesis, while a value lower than

one means a better forecasting performance of the BM speci�cation. h represents the forecast horizons and

13On this point, see Appendix C.
14On this point, see Appendix D.
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Table 8: Mincer-Zarnowitz regression test

Quarterly Frequency

h 1 q. h. 3 q. h. 6 q. h. 9 q. h. 12 q. h.

1.0248∗∗∗ 1.0303∗∗∗ 1.0242∗∗∗ 1.0248∗∗∗ 1.0393∗∗∗

Monthly Frequency

h 1 m. h. 4 m. h. 8 m. h. 12 m. h. 16 m. h.

1.0249∗∗∗ 1.0224∗∗∗ 0.9879∗∗∗ 1.0171∗∗∗ 1.0264∗∗∗

h 20 m. h. 24 m. h. 28 m. h. 32 m. h. 36 m. h.

1.0256∗∗∗ 1.0251∗∗∗ 1.0252∗∗∗ 1.0253∗∗∗ 1.0393∗∗∗

Daily Frequency

h 1 d. h. 365 d. h. 547 d. h. 730 d. h. 1095 d. h.

1.0026∗∗∗ 1.0025∗∗∗ 1.0025∗∗∗ 1.0026∗∗∗ 1.0393∗∗∗

Notes: h is the forecasting horizon.

q. h., m. h., d. h. stand for quarterly, monthly and daily horizon respectively.
∗, ∗∗, ∗∗∗ denotes statistical signi�cance at the 10%, 5%, and 1% levels respectively.

the Diebold-Mariano t-statistics are in parentheses. The two forecasts have the same accuracy under the null

hypothesis.

From Table 9, we observe that for quarterly forecasting horizons {h = 1, 2, ..., 8}, the RMSE is smaller in

the RW model than in the behavioral model. Together with this result, the Diebold-Mariano test suggests that

the RW model has a better forecasting performance than the heterogeneous behavioral model up to 5 quarterly

horizon at one percent level and up to 6 quarterly horizon at �ve percent level. For h equal to 7 and 8, the two

models are statistically indi�erent in out-of-sample forecasting power. Conversely, for the forecasting horizons

{h = 9, ..., 12}, RMSE is smaller for the behavioral speci�cation compared to the RW hypothesis with better

forecasting power at one percent statical level from h = 10. With respect to MAE, we obtain similar results.

To summarize, the Diebold-Mariano test suggests that the two model speci�cations are statistically di�erent

from each other in the short and long periods: the RW is better in the short period, while for a longer period,

the heterogeneous behavioral speci�cation outperforms the RW benchmark speci�cation. On this last point,

our results are directly in line with those obtained by Jongen et al. (2012) and De Jong et al. (2010).
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Table 9: Out-of-sample forecast results (quarterly frequency)

h 1 q. h. 2 q. h. 3 q. h. 4 q. h. 5 q. h. 6 q. h.

RMSE 1.9254∗∗∗ 2.5118∗∗∗ 2.6063∗∗∗ 1.4911∗∗∗ 1.4437∗∗∗ 1.2067∗∗

(-3.30) (-6.37) (-5.18) (-3.42) (-3.81) (-2.19)

MAE 2.2138∗∗∗ 2.9914∗∗∗ 2.8445∗∗∗ 1.5800∗∗∗ 1.5187∗∗∗ 1.1991
(-2.98) (-6.23) (-5.13) (-3.00) (-4.18) (-1.62)

h 7 q. h. 8 q. h. 9 q. h. 10 q. h. 11 q. h. 12 q. h.

RMSE 1.1167 1.0564 0.8666∗ 0.8005∗∗∗ 0.7566∗∗∗ 0.7045∗∗∗

(-1.60) (-0.62) (-1.92) (-3.25) (-3.96) (-5.10)

MAE 1.1667∗ 1.0678 0.8590∗∗ 0.7916∗∗∗ 0.7377∗∗∗ 0.6858∗∗∗

(-1.69) (-0.73) (-2.22) (-3.48) (-4.78) (-7.47)

Notes: h is the forecasting horizon.

q. h. stands for quarterly horizon.
∗, ∗∗, ∗∗∗ denotes statistical signi�cance at the 10%, 5%, and 1% levels respectively.

As we did for quarterly data, we now compare the forecasting power of the two model speci�cations for

monthly and daily data. The obtained results con�rm the previous results: up to h = 22 monthly horizon

forecast (Table 10), both the RMSE and the MAE results suggest that RW statistically outperforms the be-

havioral model. However, it is worth noting a nonsigni�cant result of the Diebold-Mariano test at the 22

and 24 monthly horizons. Conversely, the HAM exhibits a more accurate forecasting ability between 26 and

36 quarterly horizon. For daily data (Tab. 11), RW statistically outperforms behavioral speci�cation in the

short horizon with statistical signi�cance at one percent level, while, in the long horizon, the behavioral model

statistically outperforms the random walk.

Our study reveals that the predictive ability of behavioral models depends on the forecast horizon. We

believe that the results achieved follow from the intrinsic approach adopted. The RW is strongly linked to the

short-trend of the current value of the S&P500; therefore, it fails to capture the long-term changes also because

it does not carry relevant information. On the other hand, considering the dividends distributed, the behavioral

model with the Gordon speci�cation captures the pro�t prospects of the medium-long term and, consequently,

allows better predictive performance. Overall, this evidence suggests that a model of asset price determination

should combine both fundamental and non-fundamental factors (Manzan and Westerho�, 2007).
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Table 10: Out-of-sample forecast results (monthly frequency)

h 2 m. h. 4 m. h. 6 m. h. 8 m. h. 10 m. h. 12 m. h.

RMSE 3.9107∗∗∗ 2.0883∗∗∗ 2.1061∗∗∗ 2.0498∗∗∗ 2.0350∗∗∗ 1.8260∗∗∗

(-9.77) (-5.86) (-8.51) (-9.17) (-8.34) (-7.46)

MAE 4.7643∗∗∗ 2.4895∗∗∗ 2.5597∗∗∗ 2.6038∗∗∗ 2.3257∗∗∗ 1.9929∗∗∗

(-14.0) (-7.72) (-11.1) (-10.6) (-11.9) (-10.2)

h 14 m. h. 16 m. h. 18 m. h. 20 m. h. 22 m. h. 24 m. h.

RMSE 1.6305∗∗∗ 1.8985∗∗∗ 1.2665∗∗∗ 1.1420∗∗∗ 1.0528 0.9656
(-7.54) (-6.10) (-4.64) (-2.65) (-1.14) (-0.66)

MAE 1.7581∗∗∗ 1.4924∗∗∗ 1.3100∗∗∗ 1.1897∗∗∗ 1.0815∗ 0.9835
(-9.85) (-7.37) (-5.00) (-3.42) (-1.68) (-0.32)

h 26 m. h. 28 m. h. 30 m. h. 32 m. h. 34 m. h. 36 m. h.

RMSE 0.9157∗ 0.8497∗∗∗ 0.7972∗∗∗ 0.7609∗∗∗ 0.7311∗∗∗ 0.5908∗∗∗

(-1.71) (-2.96) (-4.61) (-6.00) (-6.95) (-8.82)

MAE 0.9054∗∗ 0.8454∗∗∗ 0.7861∗∗∗ 0.7427∗∗∗ 0.7069∗∗∗ 0.6668∗∗∗

(-1.96) (-3.33) (-5.31) (-6.82) (-8.03) (-10.8)

Notes: h is the forecasting horizon.

m. h. stands for monthly horizon.
∗, ∗∗, ∗∗∗ denotes statistical signi�cance at the 10%, 5%, and 1% levels respectively.

Table 11: Out-of-sample forecast results (daily frequency)

h 91 d. h. 182 d. h. 273 d. h. 365 d. h. 456 d. h. 547 d. h.

RMSE 2.1155∗∗∗ 1.7154∗∗∗ 1.4061∗∗∗ 1.1669∗∗∗ 0.9813∗∗ 0.8884∗∗∗

MAE 2.4853∗∗∗ 1.8343∗∗∗ 1.5004∗∗∗ 1.2095∗∗∗ 1.0166∗∗∗ 0.6699∗∗∗

h 638 d. h. 730 d. h. 821 d. h. 912 d. h. 1003 d. h. 1095 d. h.

RMSE 0.7820∗∗∗ 0.6955∗∗∗ 0.6105∗∗∗ 0.5438∗∗∗ 0.4853∗∗∗ 0.4394∗∗∗

MAE 0.7704∗∗∗ 0.6699∗∗∗ 0.5846∗∗∗ 0.5196∗∗∗ 0.4635∗∗∗ 0.4198∗∗∗

Notes: h is the forecasting horizon.

d. h. stands for daily horizon.
∗, ∗∗, ∗∗∗ denotes statistical signi�cance at the 10%, 5%, and 1% levels respectively.
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6 Conclusions and Open Questions

The behavioral approach in economics is now mature. It is recognized that economic agents do not form their

expectations as rational agents with superior cognitive capacities that cause no bubbles and crashes. These

unobservable self-ful�lling beliefs produce waves of optimism and pessimism, making the economy more sys-

temically fragile and possibly giving rise to cycles. In this way, a non-stationary economy must experience at

least some �eeting moments of disequilibrium so that observed prices depend on "the state of the market".

This paper proposed a method for estimating possible endogenous cycles in a dynamic model with latent

states. Using a simple stylized HAM, we employed a state-space model to analyze the presence of cycles within

S&P500. Moreover, we analyzed the model for di�erent periods, speci�cally on the basis of daily, monthly and

quarterly data. At the same time, using state-space rolling windows, we detected changes in the quotas of

the two groups of agents. Finally, within this methodology, we compared the out-of-sample predictability of a

random walk with the proposed behavioral model.

The obtained results show that the dynamics of asset prices that we see in the data, can be the consequence

of our speci�ed behavioral heuristics. In other words, the data reveals the presence of endogenous cycles that

can be explained by our HAM.

By focusing on endogenous �uctuations phenomena, we contribute to prior research on the heterogeneity

of expectations. With this respect, the use of the state-space models is promising. From a theoretical point of

view, this tool allows us to analyze the e�ect of unobservable components (heuristic decisions) on the dynamics

of the observable components (asset prices). From the empirical point of view, the �ltering procedure allows

us to estimate the unobservable components and recover their associated parameters. More speci�cally, we can

test not only if the interaction of the two main types of expectations governs the dynamics of �nancial markets

but also check if there is empirical evidence of endogenous �nancial cycles directly from the data.

As future research lines, we believe that a possible way to go deeper into the analysis is to consider the

historical series of the agents' expectations. This is beyond the present work but certainly of interest. Using

data from BIS, we will be able to compare the evolution of the beliefs extracted from our model with the

series that set the agents' expectations. At the same time, we would like to replicate our analysis for other

price indices, such as the Nikkei, the Dax or the FTSE. This extension would give the possibility to make a

comparison between di�erent �nancial markets.

We choose to maintain our model as simple as possible due to the substantial number of parameters to esti-

mate and the need to maintain a feasible mathematical condition concerning the search for complex eigenvalues.

That said, we want to highlight several possible extensions of the model. On the one hand, because other belief's

speci�cations can generate similar dynamics, it may be valuable to include other strategies adopted, such as

contrarian speculators. Moreover, believing that the main problem when considering an asset's fundamental
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value is the considerable uncertainty in de�ning it, we could compare di�erent models with di�erent funda-

mentals. Finally, a Markov switching dynamics in the state-space model formulation could also be included to

get local instability together with global instability. All these changes require substantial modi�cations of the

model and of the estimation strategy. We leave this research for future studies.

In conclusion, we would like to quote Cars Hommes: `The search for a (large) computational agent-based

HAM capturing the stylized facts as closely as possible deserves high priority. But at the same time one would

like to �nd the simplest behavioral HAM (e.g. in terms of number of parameters and variables), with a plausible

behavioral story at the micro level, that still captures the most important stylized facts observed at the aggregate

level'. In the absence of micro-data on the behavioral strategies, the unobserved components must be extracted

by the macro-�nancial time series. With the use of the state-space methodology, we believe our paper goes in

this direction.
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Appendix A

In this appendix, eigenvalues analysis is performed to study the conditions for oscillations in our dynamical

system. We obtain the associated characteristic equation considering the determinant of the transition matrix

A:

∣∣∣∣∣∣ β (1− δ)− λ −β (1− δ)

1 −λ

∣∣∣∣∣∣ = 0,

so that:

−λ (β (1− δ)− λ) + β (1− δ) = 0,

i.e.:

λ2 − λβ (1− δ) + β (1− δ) = 0,

from which:

λ1,2 =
β (1− δ)±

√
(β (1− δ))2 − 4β (1− δ)

2
.
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In order to have an oscillating behavior, these last two eigenvalues have to be complex, so we require:

∆ = (β (1− δ))2 − 4β (1− δ) < 0,

i.e.:

β (1− δ) (β (1− δ)− 4) < 0. (A.1)

When this is the case:

λ1,2 =
β (1− δ)

2
± i

√
−
[
(β (1− δ))2 − 4β (1− δ)

]
2

= a± ib.

The complex number in the cartesian form a ± ib can be written in the equivalent trigonometric form

ρ (cosω ± i sinω).

In order to have oscillations of constant amplitude, we require:

ρ =
(
a2 + b2

) 1
2 = 1,

where ρ is the modulus of the complex number.

Solving this simple equation with respect to the parameters of interest, we obtain:

√
(−β (1− δ))2

4
+
−(−β (1− δ))2 + 4 (β (1− δ))

4
= 1,

i.e.:

√
β (1− δ) = 1.

If Eq. A.1 holds with
√
β (1− δ) < 1 (ρ < 1), we observe damped oscillations. With

√
β (1− δ) > 1 (ρ >

1), we have explosive oscillations. Finally, if
√
β (1− δ) = 1 (ρ = 1), the dynamical system is governed by

constant amplitude �uctuations.

Appendix B

In this appendix, we explain the Kalman �ltering procedure. The �lter gives an algorithm to determine the

optimal estimator of the unobserved state vector. The goal is to minimize the mean square prediction error of

the unobserved state vector conditional of the observation of Pt = pt − pf .

The optimal forecasting rule has the form:

Zt | t = Zt | t−1 +Kt

(
Pt − Pt | t−1

)
,
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where Kt is a weight that changes as new information becomes available, Zt | t denotes the forecast of state

variable once Pt is realized while Zt | t−1 and Pt | t−1 denote respectively the forecast of variables Zt and Pt

before Pt is realized.

We select the optimal value of Kt to minimize the mean square prediction error at time t:

min
kt

Et

(
Zt − Zt | t

)2
= min

kt

Et

[
Zt −

(
Zt | t−1 +Kt

(
Pt − Pt | t−1

))]2
.

In a vector-matrix formulation for the observable variable, we obtain:

min
kt

Et

[
Zt −

(
Zt | t−1 +Kt

(
HZt −HZt | t−1

))]2
,

from which

min
kt

Et

[
(I −HKt)

(
Zt − Zt | t−1

)]2
,

i.e.

min
kt

(I −HKt)
2
Et

(
Zt − Zt | t−1

)2
.

Optimizing with respect to Kt we get:

−2H (I −HKt)Et

(
Zt − Zt | t−1

)2
= 0.

Indicating with Γ
t | t−1

= Et

(
Zt − Zt | t−1

)2
, we obtain:

−2H (I −HKt) Γ
t | t−1

= 0.

Solving for Kt we obtain:

Kt =
H Γ

t | t−1

H Γ
t | t−1

H ′
.

Regrouping the equations, we obtain that:

Zt | t−1 = AZt−1 | t−1, (B.1)

Γt | t−1 = AΓt−1 | t−1A
′ +Q, (B.2)

Pt | t−1 = HPt−1 | t−1.

Equations B.1 and B.2 are the so-called prediction equations. They give the optimal estimates of future

values based on the current information set. The other equations are the updating equations:
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Kt = Γt | t−1H
′(ψt)

−1
, (B.3)

with

ψt = HΓt | t−1H
′,

Zt | t = Zt | t−1 +Kt

(
Pt − Pt | t−1

)
, (B.4)

Γt | t = (I −KtH) Γt | t−1. (B.5)

In this case, the inference about Zt is updated using the observed value of Pt.

We start with a speci�cation information set with initial conditions Z0 | 0 and Γ0 | 0. Then we use the

prediction equations B.1 and B.2 to obtain Z1 | 0 and Γ1 | 0. Once we observe P1 we use the updating equations

B.3, B.4, and B.5 to obtain Z1 | 1, Γ1 | 1 and P1 | 1. We next use this information to form Z2 | 1 and Γ2 | 1, then

forecasts are updated and we continue to repeat this process until the end of the dataset.

Given the vector prediction errors µt = Pt−Pt | t−1 and the variance-covariance matrix ψt, we can form the

log-likelihood to be maximized and to estimate the parameters of interest.

log l = −T
2 ln (2π)− 1

2

T∑
t=1

ln
(∣∣ψt | t−1

∣∣)− 1
2

T∑
t=1

µt
′ (ψt | t−1

)−1
µt .

Appendix C

The Mincer-Zarnowitz test veri�es that forecast errors have zero means and are uncorrelated with any other

variable at the time of the forecast. To perform the test for out-of-sample predictions, we run the following

regression:

pT+h = b0 + b1pT+h|T + εT+h|T ,

where pT+h and pT+h|T are the actual and predicted values of asset prices respectively.

In order to have:

εT+h|T = pT+h − pT+h|T ,

these two conditions should hold:

b0 = 0, b1 = 1

i.e., the regression of the actual value on the ex-ante forecast should have a zero intercept and a coe�cient of 1.

Technically, the null hypothesis is:
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H0 : b0 = 0, b1 = 1,

against the alternative one:

H1 : b0 6= 0, b1 6= 1.

If the null hypothesis is rejected, it indicates systematic bias or ine�ciency in the forecasts.

Appendix D

We perform the Diebold-Mariano test to compare the predictive accuracy of di�erent forecasts. We de�ne the

forecast errors with the random walk speci�cation (RW) as:

εRW
T+h|T = pT+h − pRW

T+h|T,

while for the HAM behavioral speci�cation (B) as:

εBT+h|T = pT+h − pBT+h|T.

The loss associated with RW and B forecast is assumed to be a function k of the forecast errors, k
(
εRW
T+h|T

)
and k

(
εBT+h|T

)
respectively. We denote these functions with the squared-error loss and the absolute value.

In this way, for the RW model, we obtain:

k
(
εRW
T+h|T

)
=
(
εRW
T+h|T

)2
and k

(
εRW
T+h|T

)
=
∣∣∣εRW

T+h|T

∣∣∣ .
For the behavioral model, we obtain:

k
(
εBT+h|T

)
=
(
εBT+h|T

)2
and k

(
εBT+h|T

)
=
∣∣∣εBT+h|T

∣∣∣ .
The loss di�erential between the two forecasts is:

dT+h = k
(
εBT+h|T

)
− k

(
εRW
T+h|T

)
.

The null hypothesis states that the B and RW forecasts have the same predictive power:

H0 : E (dT+h) = 0 ∀ (T + h) .

In other words, the two forecasts have equal accuracy if the loss di�erential has zero expectation for all

T +h. The alternative hypothesis states that the Behavioral and RW forecasts have di�erent levels of accuracy:

H1 : E (dT+h) 6= 0.
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Under H0, the Diebold-Mariano test statistics is:

d̄− u√
σ2/h

→ N (0, 1) .
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