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Introduction The basic idea

The basic idea

Network: a collection of points joined together in pairs by lines.

(a) HIV-1 protein (b) Gas pipelines
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Introduction The basic idea

The basic idea

(c) Internet (d) Interbank

Why are so important?

Everything is a network.
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Introduction Sources

Sources

Main textbook: M.E.J. Newman, Networks: An Introduction. Oxford
University Press, 2010

Other sources: Barabasi, Vespignani, Dorogovtsev, Caldarelli...

On Economic/Social networks: Jackson, Easley and Kleinberg,
Vega-Redondo.

Source for network data: http://math.nist.gov/RPozo/complex datasets.html
(contains links to other repositories).

Software packages: igraph (R), networkx (Python)

Visualization software: Pajek, Gephi, Cytoscape...
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Network Definition

Definition

A network, also called graph G, is a couple of sets V and E, and can be
indicated as G = (V,E), where:

V is the set of NODES (or VERTICES)

E is the set of LINKS (or ARCS)

Three elements:

1 The graph is the entire representation of the network

2 Nodes are objects that act in the network

3 Edges are the connections between the nodes

The cardinality of V , |V | = n, is the number of vertices in the graph (order).

The cardinality of E, |E| = m, is the number of links in the graph (size).
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Network Kind of Networks

Kind of Networks

1 Centralized networks built around a single, centralized ”master” node.
2 Decentralized network connections across multiple masters. Each of these

separate nodes is a central unit that interacts independently with other nodes.
3 Distributed networks are composed of equal, interconnected nodes.
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Network Adjacency matrix

Adjacency matrix

The structure of a network can be described by a n x n matrix: the
(weighted) adjacency matrix A = {aij}.
If two nodes i and j are not joined by a link, aij = 0, otherwise, aij = 1.

A =

{
1, if there is an edge between vertices i and j

0, otherwise
(1)

The degree of a node i is the number of its links: ki =
∑

j aij .
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Network Adjacency matrix

Adjacency matrix

There can be more than one edge between the same pair of vertices:
multiedges.

There can be no edges that connect vertices to themselves: self-edges.

A network with neither self-edges nor multiedges is called a simple network.
A network with multiedges is called a multi-graph.

A multiedge is represented by setting the corresponding matrix element Aij equal
to the multiplicity of the edge.
A single self-edge from vertex i to itself is represented by setting the
corresponding diagonal element Aii of the matrix equal to 2.
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Network Direct and Indirect Networks

Direct and Indirect Networks

1 If E is a set of non-ordered pairs of distinct elements in V , we have a binary
undirected network. For undirected networks the adjacency matrix is
symmetric, A = AT .

2 If E is a set of ordered pairs of distinct elements in V , we have a binary
directed network. This means that a link connecting node i to j is different
from a link connecting j to i.
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Network Direct and Indirect weighted Networks

Direct and Indirect weighted Networks

1 If a binary undirected network is associated with a function w : V → R+ we
have a weighted undirected network: wij is the weight of the link i− j.
If w : V → N, the weight can be seen as:

numbers quantifying the relationship between nodes.
a measure of how many single links are present between any two nodes.

2 If weights are associated with a directed network we have a weighted
directed network.
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Network Paths

Paths

A path in a network is any sequence of vertices such that every consecutive
pair of vertices in the sequence is connected by an edge in the network.

The length of a path is the number of edges traversed along the path.

The total number of paths of length 2 from node i to node j is:

N
(2)
ij =

n∑
k=1

aikakj = (A2)ij . (2)

and generalizing the number of paths i→ j of length r is (Ar)ij .

The total number of cycles of length r is thus:

Lr =

n∑
i=1

(Ar)ii = Tr[Ar]. (3)

What if the network is indirect? Proof: Lr =
∑n

i ϕi, where ϕi are the
eigenvalues of A.
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Network metrics

Network metrics

The distance between two vertices i, j is the shortest number of edges to go
from i to j.

The neighbors of a vertex i are all vertices j which are connected to that
vertex by a single edge (dij = 1):

dij = min{
∑

k,i∈Pij

aki}, (4)

where Pij is a path connecting vertex i to vertex j.

The diameter of a graph is given by the maximum of all distances between
pairs.
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Network metrics

Network metrics

The size: L =
∑

i<j aij (undirected) and L =
∑

i,j aij (directed).

The connectance is a measure of the density of links in the network:

Undirected network: c(und) = 2L
n(n−1)

Directed networks: c(dir) = L
n(n−1)

The degree of a node is the number of neighbors:

Undirected network: ki =
∑

j aij .

Directed networks: indegree kin
i =

∑
j aji, outdegree kout

i =
∑

j aij , total =

ktot
i = kin

i + kout
i .

For a weighted networks the strength of a node is:

si =
∑
j

wij . (5)

Similarly one defines the in-strength and the out-strength
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Network metrics

Centrality Measures

Broadly speaking, the centrality of a node (or of an edge) of a network is a
measure of the importance of the node:

how influential is a person in a social network
how critical is an element in an infrastructure network,
what is the disease-spreading capacity of an individual
what is the most systemically important financial institution

Loose definition: many metrics!

Degree centrality
Betweenness centrality
Closeness centrality
Eigenvector centrality
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Network metrics

Centrality Measures

Degree centrality. The degree of a node is an obvious measure of centrality.
Only local information:

dci =
ki

N − 1
, (6)

where N is the total number of nodes.

Betweenness centrality of a node v is computed in the following way: for
each pair of vertices (i, j) one identifies the Nij shortest paths between them
and computes the number Nij(v) of them that pass through v. The
betweenness of node v is:

CB(v) =
1

(n− 1)(n− 2)

∑
i,j ̸=v

Nij(v)

Nij
(7)

i.e. the average fraction of shortest paths passing through v, where the
average is taken across all the pairs of vertices.
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Network metrics

Centrality Measures

A geodesic path is a path between two vertices such that no shortest path
exists.

Geodesic paths are necessarily self-avoiding.
Geodesic paths are not necessarily unique.
However the distance dij (possibly infinite if no path exists) is unique.

The diameter of a graph is the length of the longest geodesic path between
any pair of vertices (for which such path exists).

Closeness centrality of node i is the inverse of the mean geodesic distance
of i from all other nodes:

Ci =
n∑
j dij

. (8)

Notice: sometimes n− 1 is used for the normalization and as an alternative
the harmonic mean is used.
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Network metrics

Centrality Measures

A vertex’s importance in a network is increased by having connections to other
vertices that are themselves important.

Consider an undirected network. Let start guessing xi = 1,∀i. New centrality
estimate is x’ = Ax and iterating x(t) = Atx(0).

By decomposing x(0) in terms of the eigenvectors of A, x(0) =
∑

i civi, it is:

x(t) = At
∑
i

civi =
∑
i

cik
t
ivi = kt1

∑
i

ci

[ ki
k1

]t
vi, (9)

where k1 is the largest eigenvalue. Notice: for t→ ∞ only the contribution
of the first eigenvalue survives, hence Ax = k1x.

Eigenvector centrality. Eigenvector centrality is simply defined in terms of
the adjacency matrix A = {aij}, where aii can be either a binary or a non
negative realvalue (weighted matrix). The vector x = (x1, . . . , xn)

′ satisfies:

Ax = k1x, (10)

i.e. it is a right eigenvector of the adjacency matrix corresponding to the
maximal eigenvalue k1.
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Network metrics

Centrality Measures

The eigenvector centrality measures the importance of a node based on the score
of its neighbors. Contrary to the previous measures, this one is not based on
distance among nodes, but depends recursively on the centrality of the neighbors.
In vector notation, the eigenvector centralityc is the vector that solves the
equation Wc = λc where λ is the largest eigenvalue. In terms of recursive
expression we can define the eigenvector centrality of node i as:

ci =
1

λ

∑
j

Wijcj (11)

It is intrinsically based on the spectral properties of adjacency matrix. So it
provides a different approach to assess node centrality.
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Network metrics

Graph Laplacian

Consider the diffusion on a network: ψi is the amount of ”substance” at
node i and its dynamics is described by

dψi

dt
= C

∑
j

aij (ψj − ψi)

where C is a diffusion constant.

This can be rewritten as

dψi

dt
= C

∑
j

aijψj − Cψi

∑
j

aij = C
∑
j

(aij − δijki)ψj

or in matrix notation

dψ⃗

dt
= C(A−D)ψ⃗

where D is the diagonal matrix with Dii = ki.
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Network metrics

Graph Laplacian

The graph Laplacian is the matrix is L = D −A

The diffusion equation becomes

dψ⃗

dt
+ CLψ⃗ = 0

similar to ∂tψ⃗ + C∇2ψ⃗ = 0.

The solution of the diffusion equation can be found by setting

ψ⃗(t) =
∑
i

ai(t)v⃗i

where v⃗i are the eigenvectors of L associated to the eigenvalues λi. Substituting
in the diffusion equation we get

ȧi + Cλiai = 0

with solution

ai(t) = ai(0)e
−Cλit
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Network metrics

Graph Laplacian

It can be shown (see Newman) that λi ≥ 0∀i, thus the solution of the
diffusion equation tends to an equilibrium value when t→ ∞.

Note that at least one eigenvalue of L is zero. In fact the vector (1, 1, . . .)T

is the associated eigenvector∑
j

Lij × 1 =
∑
j

(δijkj − aij) = ki −
∑
j

aij = 0

If the network is divided in c disconnected components, the adjacency matrix
and the Laplacian are block diagonal and any vector of ones in all the
elements on one component and zero in the elements of other components
will be an eigenvectors with eigenvalue zero

Hence the second largest eigenvalue of the graph Laplacian is non-zero iff the
network is connected. This eigenvalue is called algebraic connectivity or
spectral gap of the network.
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Network metrics

Application: mean first passage time

Consider a random walker on a network and let pi(t) the probability that the
walker is at node i at (discrete) time t. The evolution equation for p⃗ is

pi(t) =
∑
j

aij
kj
pi(t− 1)

or p⃗(t) = AD−1p⃗(t− 1).

In the limit t→ ∞ the stationary probability satisfies p⃗ = AD−1p⃗ or

(
I −AD−1

)
p⃗ = (D −A)D−1p⃗ = LD−1p⃗ = 0

i.e. D−1p⃗ is an eigenvector of the Laplacian with eigenvalue 0 .

If the network has only one component, there is only one eigenvector

(1, 1, . . .)T with eigenvalue 0 . Hence p⃗ ∝ D
−→
1 , i.e. pi ∝ ki. Hence the

stationary probability of the random walker is proportional to the degree.

Francesco Campigli (SNS) SNS April 3, 2023 23 / 26



Network metrics

Application: mean first passage time

The first passage time for a random walk from a vertex u to a vertex v is the
number of steps before a walk starting at u reaches v.

First passage time is a random variable, we are interested here to the mean
value.

We modify the walk to make it an absorbing random walk, i.e. if the walk
reaches v it remains there forever.

Let pv(t) be the probability that the walker is at v (i.e. absorbed) at time t.

This is also the probability that the walk has a first passage time to v that is
less than or equal to t.

Hence the mean first passage time can be rewritten as

τv =
∞∑
t=0

t [pv(t)− pv(t− 1)]
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Network metrics

Application: mean first passage time

∀i ̸= v

pi(t) =
∑
j

aij
kj
pj(t− 1) =

∑
j ̸=v

aij
kj
pj(t− 1)

because aiv = 0 (absorbing state). But if i ̸= v then there are no terms in Avj in
the sum either thus we can write

p⃗′(t) = A′D−1p⃗′(t− 1) =
[
A′D′−1

]t
p⃗′(0)

where’ means that we have removed the v-th row and column.
Clearly pv(t) = 1−−→

1 ⊤p⃗′(t), thus

τv =

∞∑
t=0

t
−→
1 T [p⃗′(t− 1)− p⃗′(t)] =

−→
1 T

[
I −A′D−1

]−1
p⃗′(0)

where we have used

∞∑
t=0

t
[
M t−1 −M t

]
= [I −M ]−1
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Network metrics

Application: mean first passage time

Since

[
I −A′D′−1

]−1
= D′ [D′ −A′]

−1
= D′L′−1

we finally obtain

τv =
−→
1 ⊤D′L′−1p⃗′(0)

L′ is the graph Laplacian where the v-th row and column are removed and is
called reduced Laplacian.

Note that even if L is not invertible (because it has a zero eigenvalue), L′

can have an inverse because
−→
1 is not in general an eigenvector of L′.
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